Exercises for Stochastic Processes

Tutorial exercises:

T1. Fix K > 0. For $x \in V$, fix $\beta_x, \delta_x \in (0, K]$ and define

$$c(x,\eta) := \beta_x \mathbb{1}_{\{\eta(x)=0\}} + \delta_x \mathbb{1}_{\{\eta(x)=1\}}.$$

- (a) Show that there exists a spin system $(\eta_t)_{t\geq 0}$ with rate function c.
- (b) Prove that it is ergodic and find its invariant distribution.

T2. Let (V, E) be a graph with bounded degree. For $x, y \in V$ we write $x \sim y$ if $\{x, y\} \in E$. Set

$$c(x,\eta) := |\{y \in V \mid y \sim x, \eta(y) = \eta(x)\}| .$$

- (a) Show that there exists a spin system $(\eta_t)_{t\geq 0}$ with rate function c.
- (b) Check its ergodicity for the cases
 - $V := \mathbb{Z}^d$, $E := \{\{x, y\} : ||x y||_1 = 1\}$ with $d \in \mathbb{N}$,
 - $V := \mathbb{Z}/m\mathbb{Z}, E := \{\{x, y\} : x = y + 1\}$ for *m* even,
 - $V := \mathbb{Z}/m\mathbb{Z}, E := \{\{x, y\} : x = y + 1\}$ for m odd.
- T3. Let (η_t) and (ζ_t) be two spin systems satisfying the assumptions of Lemma 5.5. Write down the generator for the coupled process (η_t, ζ_t) for which $\eta_t \leq \zeta_t$ almost surely.

Homework exercises:

H1. Let p be a stochastic matrix on V with p(x, x) = 0 for all $x \in V$. Fix $\beta, \delta \ge 0$ and set

$$c(x,\eta) := \sum_{y:\eta(y)\neq\eta(x)} p(x,y) + \beta \mathbb{1}_{\{\eta(x)=0\}} + \delta \mathbb{1}_{\{\eta(x)=1\}}$$

- (a) Show that there exists a spin system $(\eta_t)_{t\geq 0}$ with rate function c.
- (b) Give necessary and sufficient conditions for its ergodicity.
- H2. Let $\alpha > 0$. We consider the noisy contact process on \mathbb{Z} given by

$$c(x,\eta) = \begin{cases} 1 & \text{if } \eta(x) = 1, \\ \frac{1}{2} \left(\mathbb{1}_{\{\eta(x-1)=1\}} + \mathbb{1}_{\{\eta(x+1)=1\}} \right) + \alpha & \text{if } \eta(x) = 0. \end{cases}$$

- (a) Show that there exists a spin system $(\eta_t)_{t>0}$ with rate function c.
- (b) Show that it is ergodic for $\alpha > 0$.
- (c) Let π^{α} be the invariant distribution for the spin system with $\alpha > 0$ and let μ^{α} be the product measure

$$\mu^{\alpha} := \prod_{z \in \mathbb{Z}} \mu_{z}^{\alpha}$$

with $\mu_z^{\alpha}(\{0\}) = \frac{1}{1+\alpha}$ and $\mu_z^{\alpha}(\{1\}) = \frac{\alpha}{1+\alpha}$ for all $z \in \mathbb{Z}$. Show that $\mu^{\alpha} \preceq \pi^{\alpha}$ for all $\alpha > 0$.

H3. Consider the voter model on $V := \mathbb{Z}$ given by

$$c(x,\eta) := \frac{1}{2} \left(\mathbb{1}_{\{\eta(x+1) \neq \eta(x)\}} + \mathbb{1}_{\{\eta(x-1) \neq \eta(x)\}} \right) \,.$$

The initial configuration $\eta_0 \in \{0, 1\}^V$ is given by

$$\eta_0(x) = \begin{cases} 0 & \text{if } x \le 0, \\ 1 & \text{if } x \ge 1. \end{cases}$$

Show that $\delta_{\eta_0} T_t$ converges weakly as $t \to \infty$ and determine the limit.

Deadline: Monday, 03.02.20